

### FlashCam: A novel camera for the Cherenkov Telescope Array

Arno Gadola on behalf of the FlashCam Team for the CTA Consortium

SPS 2014, Fribourg









- Very high energy (VHE) gamma-ray astrophysics: 10 GeV to >100TeV
- Sources: Supernova remnants, pulsars, active galactic nuclei, DM, ...



- Gamma rays cannot be produced by thermal radiation and
- are not deflected by interstellar magnetic fields and hence allow
  - $\Rightarrow$  the indirect probing of the population of highly relativistic cosmic particles
  - $\Rightarrow$  study of particle acceleration mechanisms in cosmic sources
  - $\Rightarrow$  possible detection of dark matter annihilation: X +  $\overline{X} \rightarrow \gamma + \gamma$

# High energy (HE) regime of 30 MeV – 100 GeV

Detection of the HE and VHE  $\gamma$ -rays

Detection with space-borne instruments

Detection technique:  $\gamma \rightarrow e^+e^-$ 

small detection area in the order of 1 m<sup>2</sup>



#### Very high energy (VHE) regime of 30 GeV – 100 TeV

Detection with ground-based instruments (e.g. Cherenkov telescopes)

Detection technique:  $\gamma \rightarrow e^+e^-$  in atmosphere  $\Rightarrow$  Cherenkov light

- $\checkmark$  large detection areas in the order of  $10^5~m^2$
- only useable during clear and dark night



Credit: R. Wagner

Flash

### Flash Cam

# Cherenkov Telescope Array (CTA)



- Energy range: 20 GeV 300 TeV
- 10 x better sensitivity than current instruments
- $\leq 0.05^{\circ}$  angular resolution @ TeV energies
- $\leq$  10% energy resolution @ TeV energies
- Full-sky coverage with south and north array

| Dish $\varnothing$ | South # | North # |
|--------------------|---------|---------|
| 4-7m               | 80-100  | 0       |
| 12m                | 25      | 15      |
| <b>2</b> 3m        | 4       | 4       |

- For the southern side:
  - First telescopes on-site expected in 2016
  - Full operation expected in 2019



Credit: G Pérez/IAC/SMM



Instrument sensitivity for a Crab-like source spectrum for 50 hours of observation

A. Gadola, Physik-Institut Universität Zürich, SPS2014, Fribourg

### FlashCam concept

Flash





### FlashCam concept

Flash





Flash

Cam

### The two main protagonists





144 pixel test setup

**Readout electronics** 

- Scalable up to 2304 pixel
- One unit serves up to 192 pixel
- 0.25 GS/s FADC commercial chip
- Low cost commercial FPGA
- Continuous signal digitization
- Digital trigger
- Data transmission over Ethernet:
  - > 2 GByte/s, dead-time-free up to > 30kHz

- 12 pixel photon-detector module
- On board HV, amplifiers, slow-control
- Analogue signal transmission via CAT5
- Adaptable for any sensors and pitches
- Scalable



#### Flash

Cam



Amplitude determination with two overlapping regimes:

- Amplitude of signal: amplitude  $\leq$  amplifier clipping amplitude ( $\approx$ 100 pe)
- Pulse-area: amplitude  $\geq$ 20 pe
- $\Rightarrow$  Cross-calibration of regimes possible

#### Requirements fulfilled over full dynamic range



### Time resolution, single pixel





Flash

# FlashCam camera body





1764 PMT pixel

Camera body weight (no electronics): 1183 kg

Expected final camera weight  $\leq$  1.7 t

Dimensions approximately:  $(3 \times 3 \times 1.1) \text{ m}^3$ 



Camera body front-side view

Camera inside with racks



## **Conclusion and outlook**



- FlashCam is an excellent option for CTA cameras:
  - Commercial components only
  - Dead-time-free and continuous digitization
  - Very flexible digital trigger
  - Easy maintenance due to modular construction and simple camera access
  - Easy adaption for new generation sensors
- Performance validation of all components of 144 pixel test setup nearly finished:
  - all CTA requirements are fulfilled so far
  - 4x10 Gbit readout successfully tested
- A full-size camera prototype with 1764 pixel for a 12 m telescope is ongoing:
  - Camera body nearly finished
  - Readout electronics, sensor electronics, cooling and slow control procurement in preparation

Flash Cam



### BACKUP

## Imaging the Cherenkov light





Flash

# Imaging the Cherenkov light





Flash

# Imaging the Cherenkov light





Flash