

TOPICS

AGH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

AGH University of Science and Technology

Speaker: Richard White, University of Leicester Slides prepared by Arno Gadola, University of Zurich

Properties of FlashCam

- Simple concept based on commercial available chips
- Trigger decision based on digitized signals
 - ⇒ no separate trigger path necessary
 - ⇒ programmable and flexible

Specifications

Number of pixels: 900 – 3600 Dynamic range: ~0.2 – 3000 PE Local trigger rate: ~10 kHz Storage of trace

- Low power (<0.5 W/channel) 12 bit FADCs currently only available up to sampling speeds of 250 MS/s
 - ⇒ extensive simulations incl. time jitter, night sky background etc. have shown that trigger performance applying digital trigger options is very competitive with higher (e.g. 2 GS/s) sampling speeds
 - ⇒ resulting data rate (~600 MB/s) allows to transmit the full pixel event information w/o data reduction over standard gigabit ethernet infrastructure (incl. commercial switches)

terenkov telescope array FlashCam based on simulations for MST

Simulation of 2 GS/s and 250 MS/s digitization

Resolution above 250 MS/s approx. constant

Simulations have shown: 250 MS/s digitization highly competitive

FlashCam based on simulations for MST

Trigger simulations

Time jitter, NSB, and other studies show that 250 MS/s together with digital trigger options is competitive with higher sampling rates

Comparison of measurements and simulation

Resolution at 2 GS/s and 250 MS/s with measurements shows that our simulations are OK

cta therenkov telescope array Camera architecture: Overview

Separation of PDP and ADC, Analogue signal over CAT5/RJ45

 \rightarrow allows adaption of various photon detectors and pitches and avoids electronics at the focal plane (weight)

Horizontal integration

→ should reduce costs

Data transport via ethernet (ETH)

→ commercial switches

Digital trigger based on FADC data

 \rightarrow flexible and programmable

cta cherenkov telescope array Preamplifier

Measured with FlashCam demo board

Measured with FlashCam demo board

Digitized signal
Timing signal
Amplitude signals (10 ns width)
Amplitude signals (20 ns width)

Saturation 'mode':

- Amplitude signals no longer useable
- Integrate digitized signal over 200 ns window in FPGA and subtract baseline for amplitude reconstruction (3000 PE signal is ~120 ns)

FlashCam – A fully digital camera for Cherenkov telescopes, SST meeting Meudon, Sept. 2011

Measured with FlashCam demo board

CTA therenkov telescope array Preamplifier / Time resolution

FlashCam – A fully digital camera for Cherenkov telescopes, SST meeting Meudon, Sept. 2011

Measured with FlashCam demo board

FlashCam – A fully digital camera for Cherenkov telescopes, SST meeting Meudon, Sept. 2011

cta the FlashCam demo board setup

- **1** PMT pulse generator
- 2 Preamplifier board
- **3** Analogue signal transmission (CAT5)
- 4 ADC driver board

- 5 Analogue pulse before ADC
- 6 Demo board with 8 parallel FADCs and FPGA
- 7 Event transmission via LAN
- 8 Digitized pulse (4 ns / step)

Patch triplets, clipped sum

cta terenkov telescope array Focal plane: The PMT solution

terenkov telescope array The (possible) needs of an SST camera

High energy shower physics

• Handling of high energy showers with long time spread over whole camera (< 100 ns)

Using (G)APDs or multi-anode PMTs instead of PMTs

- Change of high voltage supply and stabilization
- Long signal tail, larger dark count, high NSB gives large DC component with (G)APDs
- Smaller pixel-pixel distance

Separation of front-end electronics from 'readout' electronics for a lightweight camera

- Separation of detector and digitization
- Transmission of analogue signals over long distances (> 10 m)

Number of pixels

• Much smaller or much larger pixel number as MST or LST

cterenkov telescope array The FlashCam as an SST camera

High energy shower physics

- Handling of high energy showers with long time spread over whole camera (< 100 ns)
 - FlashCam can send all pixel information of a 4 µs window with pre- and post-trigger
 - No introduction of dead time

Using (G)APDs or multi-anode PMTs instead of PMTs

- Change of high voltage supply and stabilization
 - Front-end electronics is interchangeable and very flexible (HV generation on front-end module)
- Long signal tail, larger dark count, high NSB gives large DC component with (G)APDs
 - FlashCam's electronic is DC coupled and thus can measure NSB and dark count
 - Too large DC levels will reduce useable dynamic range of ADC \rightarrow change to AC coupling
- Smaller pixel-pixel distance
 - Is limited only by the preamp, HV generation and slow control concept (staggering of PCBs possible)

Separation of front-end electronics from 'readout' electronics for a lightweight camera

- Separation of detector and digitization
 - This separation is already implemented in the FlashCam concept with front-end modules containing amplification and HV generation and back-end racks with the digitization and ethernet components
- Transmission of analogue signals over long distances (> 10 m)
 - Tests with up to 32 m CAT5 cables (1.5 2 % crosstalk) were already successfully performed. Longer cables will only introduce larger crosstalk.

Number of pixels

- Much smaller or much larger pixel number as MST or LST
 - FlashCam is sizeable with 900 up to 2304 (3600) pixels with the current mechanics using PMTs

- FlashCam's concept includes a separation of the FPI (modules) and the digitization electronics (racks).
- This modularity allows to exchange default photon detectors (PMTs) with other photon-detector types such as SiPMT (APD) or MaPMT with associated power supply and amplifiers.
- The front-end module architecture allows different number of pixels and pixel-pixel pitches while the back-end electronics can be adapted to the number of pixels by 'only' adding or removing ADC cards from the racks.
- The moderate sampling rate of 250 MS/s might well be ideally suited to the sampling and data storage needs especially of an SST.
- Dead time free data taking of long traces (≤ 4 µs buffer) for all pixels. Event trigger can be positioned anywhere within the readout window (pre-, post triggering).

Taking measurements with the Demo Board chain:

MPIK