

Digitization of PMT signals with FADCs:

comparison of simulation and measurement

Arno Gadola Physik-Institut Universität Zürich General CTA Meeting Zeuthen, 10.–12.05.2010

Outline

- Summary of previous presentations
 - Impact of sampling rate
- Verification of simulation by real measurements
 - Parameters
 - Production of measured data
 - Generation of simulated data
- Data analysis and comparison of results
- □ Conclusion

What has already been shown?

From earlier presentations (German Hermann, Thomas Kihm)... (see: http://www.cta-observatory.org/ctawpcwiki/images/a/a3/FlashCam for CTA Zurich meeting www.ppt)

"result-dcrd pe=1-ampsigma-vs-sf.out" Instrumental resolution depends on "result-dcrd pe=2-ampsigma-vs-sf.out" √7 phe statistics "result-dcrd-pe=3-ampsigma-vs-sf.out" "result-dcrd-pe=4-ampsigma-vs-sf.out" "result-dcrd pe=5-ampsigma-vs-sf.out" Instrumental resolution [phe] "result-dcrd pe=6-ampsigma-vs-sf.out" Digitization rate "result-dcrd.pe=7-ampsigma-vs-sf.out" □ Analogue shaping □ Intrinsic signal width & 7 phe amplitude □ Night sky background level 250 MS Photon detector time jitter 1 phe □ Intrinsic resolution of PMT Electronics noise level 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 □ Analysis method Sampling rate [GS/s]

11.05.10, Arno Gadola CTA Meeting Zeuthen

□ The simulation shows that varying the sampling rate between 250 MS/s and 1 GS/s has only a small effect on the instrumental resolution: instrumental resolution ± 5 % (Davis Cotton)

□ Lowering the sampling rate would save costs, lower power consumption on the camera electronics, reduce data band width, and allow for a fully digital trigger.

BUT: it is only a simulation! How does that look in the real world?

➔ Verification of the simulation by replacing the signal production (light source, PMT, shaping) with hardware and comparing both outcomes!

Test setup

Processing the signal(s)

Processing steps	Test setup (hardware)	Modeling, parameters
Cherenkov pulse	Laser head	Pulse amplitude, width, jitter
	$\lambda = 370$ nm, t _{FWHM} = 0.6ns	
NSB	Light bulb	NSB frequency
PMT	Photonis XP2960 (HESS)	Bandwidth, time distribution,
	@ 950 V (1.4 kV typ.)	amplification (1 phe amplitude)
Preamplification	ZFL1000, MMIC, NIM	Multiplication factor
Shaping	Bessel LP, $n = 5$	Bessel LP, $n = 5$
	f _{cut-off} = 80 MHz	f _{cut-off} = 80 MHz
	f _{cut-off} = 250 MHz	f _{cut-off} = 250 MHz
Digitisation	Oscilloscope LeCroy	
	bw = 1 GHz, $f_s = 2$ GS/s	
RAW data	0.5 ns resolution (2 GS/s)	0.02 ns resolution (50 GS/s)
Downsampling	f _s = 250 MS/s and 2000 MS/s	
Signal reconstruction	Peak search for signal and for noise (window width ± 4 ns)	

Modelling of a Sample & Hold of an ADC

- 1. Taking average of 4 samples (sample)
- 2. Round average to integer (hold + read out)
- 3. Filling up 8 samples with the truncated average

11.05.10, Arno Gadola CTA Meeting Zeuthen Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich

Test setup

Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich

Time [ns]

Time [ns]

Simulation parameters

Parameter	Value from measurements	Determination
PMT bandwidth	70 MHz	Determined from measured PMT pulse rise time (~2 ns @ 950V)
Mean photon pulse amplitude	4.8 phe	Determined by histograms of 1 and 5 phe measurements
Electronics noise	0.05 phe/ \sqrt{ns} for f _s = 250 MS/s and 2 GS/s	Determined by the comparison of the width of the noise peak distribution of the simulated and measured data.
NSB frequency	$f_{NSB} = 0 - 455 \text{ MHz}$ (± 5-8% uncertainty)	Determined by subtracting the baseline from the low NSB measurements ($f_s = 250$ and 2000 MS/s) and comparing with the measured DC values.
Time jitter of laser pulse photons	σ _L = 0.5 ns	Estimated! Assuming a Gaussian distribution.
PMT transit time difference	$\sigma_{PMT} = \frac{3ns}{\sqrt{12}} \approx 870 \text{ ps}$ (datasheet: 800 ps) $\sigma_{total}^{2} = \sigma_{L}^{2} + \sigma_{PMT}^{2} = 1 \text{ ns}^{2}$	Estimated! Assuming box distribution with 3 ns width. σ_{PMT} = difference between centre of cathode and 18 mm from it

Generating simulated data

Simulation resolution = 20 ps Cherenkov pulse: 5 phe NSB White noise Sum of the three components

PMT has <100 MHz bandwidth \Rightarrow cut-off of white noise at high frequencies

11.05.10, Arno Gadola CTA Meeting Zeuthen

Examples of a simulated and a measured event at $\rm f_{\rm NSB}$ = 115 MHz with a 4.8 phe Cherenkov pulse.

Plots for the simulated and measured events show different events!

11.05.10, Arno Gadola CTA Meeting Zeuthen

Determination of

amplitude (noise)

Maximum in a search window with a width of ± 4 ns in a region on the left hand side of the signal peak.

amplitude (signal)

Same as described above in the signal region. Position of the signal peak needs to be known with good precision.

□ time information (signal)

COG (centre of gravity) of the area of the signal peak above the FWHM.

Comparison of:

- □ Measured signal sampled with 250 MS/s and 2 GS/s
- □ Simulated signal sampled with 250 MS/s and 2 GS/s
- Parameters:
 - Cherenkov pulse: 4.8 phe (mean)
 - NSB frequency: 0 MHz, 10 MHz, 50 MHz, 115 MHz, 455 MHz
 - Search window width ±4 ns
- COG of each spectrum is centered at 0 phe for the noise and at 4.8 phe for the signal (normalized spectra)

NSB = 0 MHz, fs = 250 MS/s

CTA Meeting Zeuthen

NSB = 0 MHz, fs = 2 GS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen

NSB = 0 MHz, fs = 250 MS/s

CTA Meeting Zeuthen

NSB = 50 MHz, fs = 2 GS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen

NSB = 50 MHz, fs = 250 MS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen

NSB = 115 MHz, fs = 2 GS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen

NSB = 115 MHz, fs = 250 MS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich

NSB = 455 MHz, fs = 2 GS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich

NSB = 455 MHz, fs = 250 MS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich

- Previous simulations have shown that using sampling rates down to 250 MS/s for the signal digitization would have little effect on the reconstructed signal quality and accuracy.
- □ The comparison of amplitude spectra of measured and simulated data shows no significant difference as seen in the preceding plots.
- That means that we have understood the simulation and its parameters at a very good level and therefore believe the validity of the simulation and its results.
- □ A digitization at 250 MS/s should therefore be a real option for the CTA camera.

11.05.10, Arno Gadola CTA Meeting Zeuthen

11.05.10, Arno Gadola CTA Meeting Zeuthen

Ex: amplitude distribution @ 250 MS/s and 1000 MS/s sampling

Pixel amplitude [p.e.]

11.05.10, Arno Gadola CTA Meeting Zeuthen

 \square Determination of $f_{\rm NSB}$ for the low NSB measurements (10MHz and 50 MHz)

- \Box Fitting f_{NSB} linearly to DC measurements
- \Box Determination of DC value for $f_{NSB} = 115$ MHz
- ☑ Compare measurements and simulations for all $f_{NSB} = + 5-8\%$ uncertainty

11.05.10, Arno Gadola CTA Meeting Zeuthen

NSB = 10 MHz, fs = 2 GS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen

NSB = 10 MHz, fs = 250 MS/s

11.05.10, Arno Gadola CTA Meeting Zeuthen